Скачать книгу

внимание на то, что правила не позволяют участникам обсуждать игру или то поведение, которого им следует придерживаться, до ее начала. Они лишены возможности защищаться, но при этом могут атаковать соперника. Вот это действительно дилемма! Мой опыт свидетельствует: только около 8 % пар игроков одновременно приходят к решению Нэша и получают по 48 очков каждый. По сообщениям других исследователей{16}, количество пар, использующих кооперативную стратегию, составляет 12 % в Великобритании и 25 % в США, однако я не владею информацией о том, как проходил инструктаж этих людей перед началом игры, что не позволяет мне объяснить различия в показателях. Тем не менее от 75 до 92 % игроков получают в итоге сумму очков меньше названного Нэшем оптимального значения, хотя некоторым удается «излечиться» от некооперативного стиля игры и довести эту сумму до 30 и более.

      Чуть меньше половины участников самостоятельно выбирают манеру поведения в первом раунде, и это свидетельствует о том, что они воспринимают «дилемму» (при условии, что они соблюдают «правила» и делают осознанный выбор) как кооперативную игру. Но после нескольких раундов большинство из них обнаруживает, что не может изменить поведение партнера, использующего некооперативную стратегию. Правда, некоторые из игроков осознают невозможность такого изменения только после десяти раундов, и тогда в итоге оба получают очень низкую сумму баллов.

      Мои собственные наблюдения и наблюдения моих коллег за работой тысяч переговорщиков свидетельствуют о том, что очень немногие из них рассматривают максимизацию общей выгоды как цель сделки. Это, конечно, печально для решения Нэша, но большинство участников переговоров ведут себя так, словно их совершенно не интересует общий выигрыш. В результате подавляющее большинство переговорщиков добиваются недостаточно оптимального (согласно равновесию Нэша) результата.

      Некоторым игрокам, которые нарушают свои обещания (после четвертого и восьмого раундов устраиваются два коротких перерыва, во время которых участники игры могут договориться друг с другом), удается получить много положительных баллов (больше 48) исключительно за счет их незадачливых партнеров, которые верят обещанному. Однако при арифметическом анализе такого выигрыша становится понятно, что это ни в коей мере не противоречит концепции равновесия по Нэшу, так как те очки, которые они получают свыше 48, их партнер теряет. То есть чем больше первый игрок набирает баллов, тем меньше их у второго игрока. Результат умножения положительного и отрицательного числа всегда имеет отрицательное значение, а это значит, что он в любом случае будет ниже того значения, которое приводится в модели Нэша.

      Проблема реальных торгов

      Проблема реальных торгов связана с существованием двух стилей поведения, используемых участниками переговоров, – с нулевым и с ненулевым результатом, или некооперативного и кооперативного. Эффективное распределение выгоды зависит от того, как поведут себя переговорщики. Опыт показывает, что в

Скачать книгу


<p>16</p>

Карлайл и Паркер, 1989, с. 49.