Скачать книгу

delivery systems for bioactive compounds in food systems: preparation, characterization, and applications in food industry. In: Emulsions, 365–403. Academic Press.

      49 49 Wang, K., Sun, D.W., and Pu, H. (2017). Emerging non-destructive terahertz spectroscopic imaging technique: principle and applications in the agri-food industry. Trends Food Sci. Technol. 67: 93–105.

      50 50 Echiegu, E.A. (2017). Nanotechnology applications in the food industry. In: Nanotechnology, 153–171. Singapore: Springer.

      51 51 Davarcioglu, B. (2017). Nanotechnology applications in food packaging industry. In: Nanotechnology, 87–113. Singapore: Springer.

      52 52 Khan, A.S. (2017). Nanotechnology applications in food and agriculture. In: 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), July, 877–878. IEEE.

      53 53 Baltić, M.Ž., Bošković, M., Ivanović, J. et al. (2013). Nanotechnology and its potential applications in meat industry. Tehnol. Mesa 54 (2): 168–175.

      54 54 Vélez, M.A., Perotti, M.C., Santiago, L. et al. (2017). Bioactive compounds delivery using nanotechnology: design and applications in dairy food. In: Nutrient Delivery, 221–250. Academic Press.

      55 55 Var, I. and Sağlam, S. (2015). Nanotechnology applications in the food industry. GIDA-J. Food 40 (2): 101–108.

      56 56 Rouf, A., Kanojia, V., and Naik, H.R. (2017). Cell immobilization: an overview on techniques and its applications in food industry. Int. J. Commun. Syst. 5 (6): 1817–1824.

      57 57 Jung, M., Kim, J., Noh, J. et al. (2010). All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron Devices 57 (3): 571–580.

       Jéssica de Matos Fonseca☆, Betina L. Koop☆, Thalles C. Trevisol, Cristiane Capello, Alcilene R. Monteiro, and Germán A. Valencia

       Federal University of Santa Catarina, Department of Chemical and Food Engineering, Florianópolis 88040-900, Brazil

      In the last years, polymers isolated from renewable raw materials have been studied as alternative to synthetic polymers for food packaging applications [1]. Synthetic polymers-based films are thin layers, between 50 and 80 μm. These materials have excellent barrier properties against several gases (e.g. H2O, O2, and CO2), as well as against biological, chemical, and physical contaminants [1, 2]. However, synthetic polymers are derived from petroleum, a nonrenewable resource, and they can be classified as nondegradable materials, negatively impacting the ecosystems [3]. In this sense, several researchers have focused to replace synthetic polymers by polymers from natural sources, also called as biopolymers [4–9]. Several biopolymers have been used to manufacture films and coatings due to the good film-forming properties of these macromolecules. Furthermore, these macromolecules can be isolated directly from biomass or they can be synthetized using microbial routes, as well as by means of chemical synthesis using monomers from agro-resources [3, 10, 11].

      Food packaging based on biopolymers are sensitive to the relative humidity and temperature. In recent years, the development of advanced films and coatings based on biopolymers has been explored and applied to extend the shelf life of foods, as well as to improve food safety, quality, and convenience to consumers [3]. The objective of this chapter is to review the new strategies to manufacture biopolymers-based films and coatings, aiming their applications on foods, as well as the prospects and limitations of these materials for food packaging sector.

      2.2.1 Casein and Whey

      Acid caseins are also insoluble in water, so they are neutralized to pH 6.7 using potassium, sodium, calcium, or ammonium to obtain caseinates, which are soluble in water. In another way, casein can be neutralized using sodium hydroxide to produce a caseinate called as sodium caseinate. Similarly, sodium, ammonium, and potassium caseinates are obtained using others neutralizing agents. Some caseinates such as sodium, ammonium, and potassium caseinates have similar physical properties, and their solutions are viscous and translucent. In contrast, solutions based on calcium caseinate are turbid [14]. Sodium and calcium caseinates are the most utilized biopolymers due to their excellent solubility, gelation, viscosity, and emulsifying and foaming properties [15].

Components Production approach Main results References
Casting Films with improved water solubility and water vapor permeability. Bilayer films containing tannin have antioxidant property and antimicrobial activity against E. Coli and L. innocua [19]
Casting Films with antimicrobial activity

Скачать книгу