ТОП просматриваемых книг сайта:
Power Magnetic Devices. Scott D. Sudhoff
Читать онлайн.Название Power Magnetic Devices
Год выпуска 0
isbn 9781119674634
Автор произведения Scott D. Sudhoff
Издательство John Wiley & Sons Limited
13 Chapter 13Figure 13.1 Buck converter.Figure 13.2 Buck converter operation.Figure 13.3 Buck converter average‐value model.Figure 13.4 Input filter waveforms.Figure 13.5 Output filter waveforms.Figure 13.6 Semiconductor/heat‐sink thermal‐equivalent circuit.Figure 13.7 Semiconductor loss versus current ripple.Figure 13.8 Required heat‐sink mass versus current ripple.Figure 13.9 Input inductor mass versus inductance.Figure 13.10 Input inductor loss versus inductance.Figure 13.11 UI‐core inductor.Figure 13.12 Cross‐section of the winding bundle.Figure 13.13 Winding bundle thermal‐equivalent circuit.Figure 13.14 Simplified winding bundle thermal‐equivalent circuit.Figure 13.15 Buck converter parameter distribution.Figure 13.16 Buck converter Pareto‐optimal front.Figure 13.17 Efficiency versus specific power density.Figure 13.18 Switching frequency versus mass.Figure 13.19 UI‐core output inductor cross section.
14 Chapter 14Figure 14.1 A dc–ac converter.Figure 14.2 Phase leg of three‐phase bridge converter.Figure 14.3 Sine‐triangle modulation.Figure 14.4 Inductor topology.Figure 14.5 Time‐domain waveforms with Ld = Lq .Figure 14.6 Time‐domain waveforms with Ld ≠ Lq .Figure 14.7 Elementary three‐phase inductor MEC.Figure 14.8 The three‐phase inductor MEC.Figure 14.9 Interior and exterior fringing and leakage paths.Figure 14.10 Face fringing and leakage permeances.Figure 14.11 Test points.Figure 14.12 Case study assumed current waveforms.Figure 14.13 Three‐Phase I‐Core inductor parameter distribution.Figure 14.14 Three‐Phase I‐Core inductor pareto‐optimal front.Figure 14.15 Design 100. Dimensions in meters.
15 Chapter 15Figure 15.1 Differential‐ and common‐mode currents.Figure 15.2 Dc‐to‐ac converter.Figure 15.3 Power block.Figure 15.4 Common‐mode equivalent circuit.Figure 15.5 Simplified common‐mode equivalent circuits.Figure 15.6 Common‐mode flux‐linkage waveform.Figure 15.7 Peak common‐mode flux linkage versus duty cycle.Figure 15.8 Original and proxy common‐mode flux‐linkage waveforms.Figure 15.9 CMI circuit diagram.Figure 15.10 UR‐core common‐mode inductor.Figure 15.11 Winding cross section.Figure 15.12 UR core magnetic analysis.Figure 15.13 UR‐core common‐mode inductor parameter distribution.Figure 15.14 UR‐core inductor Pareto‐optimal front.Figure 15.15 Design 75.Figure 15.16 Design 75 BH trajectories based on proxy waveform.Figure 15.17 Design 75 BH trajectories using original flux‐linkage waveform....
16 Chapter 16Figure 16.1 Selection of boundary conditions.Figure 16.2 Two domain problem.Figure 16.3 Triangular element.Figure 16.4 Simple domain.Figure 16.5 Rectangular–cuboid core inductor mesh.Figure 16.6 Rectangular–cuboid core inductor fields.Figure 16.7 FEA predictions for λ − i characteristic.
17 Appendix BFigure B.1 B–H characteristics of the selected ferrites.
18 Appendix CFigure C.1 B–H characteristics of selected steels.
Guide
7 Preface
11 Appendix A: Conductor Data and Wire Gauges
12 Appendix B: Selected Ferrimagnetic Core Data
13 Appendix C: Selected Magnetic Steel Data
14 Appendix D: Selected Permanent Magnet Data
15 Appendix E: Phasor Analysis
16 Appendix F: Trigonometric Identities
17 Index
18 Books in the IEEE Press Series on Power and Energy Systems
19 Wiley End User License Agreement
Pages
1 ii
2 iii
3 iv
4 v
5 xiii
6 xv
7 xvi
8 xvii
9 xix
10 1
11 2
12 3
13 4
14 5
15 6
16 7
17 8