Скачать книгу

Hollingsworth, S.A. and Dror, R.O. (2018). Molecular dynamics simulation for all. Neuron 99: 1129–1143.

      3 3 Pareek, S., Jain, D., Hussain, S. et al. (2019). A new insight into corrosion inhibition mechanism of copper in aerated 3.5 wt.% NaCl solution by eco‐friendly Imidazopyrimidine Dye: experimental and theoretical approach. Chemical Engineering Journal 358: 725–742.

      4 4 Zhang, X.Y., Kang, Q.X., and Wang, Y. (2018). Theoretical study of N‐thiazolyl‐2‐cyanoacetamide derivatives as corrosion inhibitor for aluminum in alkaline environments. Computational and Theoretical Chemistry 1131: 25–32.

      5 5 Yan, Y., Dai, L., Zhang, L.H. et al. (2018). Investigation on the corrosion inhibition of two newly‐synthesized thioureas to mild steel in 1 mol/L HCl solution. Research on Chemical Intermediates 44: 3437–3454.

      6 6 Chafiq, M., Chaouiki, A., Al‐Hadeethi, M.R. et al. (2020). A joint experimental and theoretical investigation of the corrosion inhibition behavior and mechanism of hydrazone derivatives for mild steel in HCl solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 610: 125744.

      7 7 Rbaa, M., Dohare, P., Berisha, A. et al. (2020). New Epoxy sugar based glucose derivatives as eco friendly corrosion inhibitors for the carbon steel in 1.0 M HCl: Experimental and theoretical investigations. Journal of Alloys and Compounds 833: 154949.

      8 8 Gouron, A., Le Mapihan, K., Camperos, S. et al. (2018). New insights in self‐assembled monolayer of imidazolines on iron oxide investigated by DFT. Applied Surface Science 456: 437–444.

      9 9 Belghiti, M.E., Echihi, S., Mahsoune, A. et al. (2018). Piperine derivatives as green corrosion inhibitors on iron surface; DFT, Monte Carlo dynamics study and complexation modes. Journal of Molecular Liquids 261: 62–75.

      10 10 Dagdag, O., El Harfi, A., Cherkaoui, O. et al. (2019). Rheological, electrochemical, surface, DFT and molecular dynamics simulation studies on the anticorrosive properties of new epoxy monomer compound for steel in 1 M HCl solution. RSC Advances 9: 4454–4462.

      11 11 Chafiq, M., Chaouiki, A., Lgaz, H. et al. (2020). Synthesis and corrosion inhibition evaluation of a new schiff base hydrazone for mild steel corrosion in HCl medium: electrochemical, DFT, and molecular dynamics simulations studies. Journal of Adhesion Science and Technology 34 (12): 1283–1314.

      12 12 Khalil, S.M., Ali‐Shattle, E.E., and Ali, N.M. (2013). A theoretical study of carbohydrates as corrosion inhibitors of iron. Zeitschrift für Naturforschung A 68: 581–586.

      13 13 Saha, S.K. and Banerjee, P. (2015). A theoretical approach to understand the inhibition mechanism of steel corrosion with two aminobenzonitrile inhibitors. RSC Advances 5: 71120–71130.

      14 14 Rahmani, R., Boukabcha, N., Chouaih, A. et al. (2018). On the molecular structure, vibrational spectra, HOMO‐LUMO, molecular electrostatic potential, UV–Vis, first order hyperpolarizability, and thermodynamic investigations of 3‐(4‐chlorophenyl)‐1‐(1yridine‐3‐yl) prop‐2‐en‐1‐one by quantum chemistry calculations. Journal of Molecular Structure 1155: 484–495.

      15 15 Chaouiki, A., Lgaz, H., Chung, I.‐M. et al. (2018). Understanding corrosion inhibition of mild steel in acid medium by new benzonitriles: Insights from experimental and computational studies. Journal of Molecular Liquids 266: 603–616.

      16 16 Peason, R. (1997). Chemical Hardness: Applications from Molecules to Solids (ed. R.G. Pearson). Weinheim: Wiley‐VCH https://doi.org/10.1002/3527606173.

      17 17 Pearson, R.G. (1963). Hard and soft acids and bases. Journal of the American Chemical Society 85: 3533–3539.

      18 18 Kovačević, N. and Kokalj, A. (2011). Analysis of molecular electronic structure of imidazole‐and benzimidazole‐based inhibitors: a simple recipe for qualitative estimation of chemical hardness. Corrosion Science 53: 909–921.

      19 19 Koopmans, T. (1933). Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1: 104–113.

      20 20 Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Physical Review 136: B864.

      21 21 Hohenberg, P. and Kohn, W. (1964). Density functional theory (DFT). Physical Review 136: B864.

      22 22 Withnall, R., Chowdhry, B.Z., Bell, S., and Dines, T.J. (2007). Computational chemistry using modern electronic structure methods. Journal of Chemical Education 84: 1364.

      23 23 Kohn, W. and Sham, L.J. (1965). Self‐consistent equations including exchange and correlation effects. Physical Review 140: A1133.

      24 24 Slater, J.C. (1951). A simplification of the Hartree‐Fock method. Physical Review 81: 385.

      25 25 Obot, I., Macdonald, D., and Gasem, Z. (2015). Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: an overview. Corrosion Science 99: 1–30.

      26 26 Lee, C., Yang, W., and Parr, R.G. (1988). Development of the Colle‐Salvetti correlation‐energy formula into a functional of the electron density. Physical Review B 37: 785.

      27 27 Sure, R. and Grimme, S. (2013). Corrected small basis set Hartree‐Fock method for large systems. Journal of Computational Chemistry 34: 1672–1685.

      28 28 Inada, Y. and Orita, H. (2008). Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets. Journal of Computational Chemistry 29: 225–232.

      29 29 Cramer, C.J. (2013). Essentials of Computational Chemistry: Theories and Models. John Wiley & Sons.

      30 30 Jensen, F. (2017). Introduction to Computational Chemistry. John wiley & sons.

      31 31 Frank, J. (October 1999). Introduction to Computational Chemistry. Editorial Offices.

      32 32 Young, D. (2004). Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. John Wiley & Sons.

      33 33 Chong, D.P. (1995). Recent Advances in Density Functional Methods. World Scientific.

      34 34 Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1: 104–113.

      35 35 Parr, R.G. and Pearson, R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society 105: 7512–7516.

      36 36 Morell, C., Gázquez, J.L., Vela, A. et al. (2014). Revisiting electroaccepting and electrodonating powers: proposals for local electrophilicity and local nucleophilicity descriptors. Physical Chemistry Chemical Physics 16: 26832–26842.

      37 37 Lukovits, I., Kalman, E., and Zucchi, F. (2001). Corrosion inhibitors—correlation between electronic structure and efficiency. Corrosion 57: 3–8.

      38 38 Lgaz, H., Chung, I.M., Albayati, M.R. et al. (2020). Improved corrosion resistance of mild steel in acidic solution by hydrazone derivatives: an experimental and computational study. Arabian Journal of Chemistry 13: 2934–2954.

      39 39 Lgaz, H., Salghi, R., Masroor, S. et al. (2020). Assessing corrosion inhibition characteristics of hydrazone derivatives on mild steel in HCl: Insights from electronic‐scale DFT and atomic‐scale molecular dynamics. Journal of Molecular Liquids 308: 112998.

      40 40 Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters 77: 3865.

      41 41 Meller, J.A. Molecular Dynamics, e LS (2001).

      42 42 Hansson, T., Oostenbrink, C., and van Gunsteren, W. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology 12: 190–196.

      43 43 Allen, M.P. (2004). Introduction to molecular dynamics simulation. Computational Soft Matter: From Synthetic Polymers to Proteins 23: 1–28.

      44 44 Binder, K., Horbach, J., Kob, W. et al. (2004). Molecular dynamics simulations. Journal of Physics: Condensed Matter 16: S429.

      45 45 Rapaport, D.C. (2004). The Art

Скачать книгу