ТОП просматриваемых книг сайта:
Clinical Dilemmas in Diabetes. Группа авторов
Читать онлайн.Название Clinical Dilemmas in Diabetes
Год выпуска 0
isbn 9781119603184
Автор произведения Группа авторов
Жанр Медицина
Издательство John Wiley & Sons Limited
16 16. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. 2020.
17 17. Abdul‐Ghani MA, Tripathy D and DeFronzo RA. Contributions of beta‐cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006; 29(5):1130–1139.
18 18. Knowler WC et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346(6):393–403.
19 19. Talmud PJ et al. Sixty‐five common genetic variants and prediction of type 2 diabetes. Diabetes. 2015; 64(5):1830–1840.
20 20. Mahajan A et al. Fine‐mapping type 2 diabetes loci to single‐variant resolution using high‐density imputation and islet‐specific epigenome maps. Nat Genet. 2018; 50(11):1505–1513.
21 21. Grant SF et al. Variant of transcription factor 7‐like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006; 38(3):320–323.
22 22. Schulz LO et al. Effects of traditional and western environments on prevalence of type 2 diabetes in Pima Indians in Mexico and the U.S. Diabetes Care. 2006; 29(8):1866–1871.
23 23. Bergman RN, Phillips LS and Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta‐cell glucose sensitivity from the response to intravenous glucose. J Clin Invest. 1981; 68(6):1456–1467.
24 24. Shah P et al. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2000; 85(11):4053–4059.
25 25. Bock G et al. Pathogenesis of pre‐diabetes: mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 2006; 55(12):3536–3549.
26 26. Sathananthan A et al. A concerted decline in insulin secretion and action occurs across the spectrum of fasting and postchallenge glucose concentrations. Clin Endocrinol (Oxf). 2012; 76(2):212–219.
27 27. Basu A et al. Impaired basal glucose effectiveness in NIDDM: contribution of defects in glucose disappearance and production, measured using an optimized minimal model independent protocol. Diabetes. 1997; 46(3):421–432.
28 28. Camilleri M. Peripheral mechanisms in appetite regulation. Gastroenterology. 2015; 148(6):1219–1233.
29 29. Camilleri M and Shin A. Novel and validated approaches for gastric emptying scintigraphy in patients with suspected gastroparesis. Dig Dis Sci. 2013; 58(7):1813–1815.
30 30. Butler AE et al. Beta‐cell deficit and increased beta‐cell apoptosis in humans with type 2 diabetes. Diabetes. 2003; 52(1):102–110.
31 31. Shah M et al. TCF7L2 Genotype and alpha‐Cell Function in Humans Without Diabetes. Diabetes. 2016; 65(2):371–380.
32 32. Adams JD and Vella A. What can diabetes – associated genetic variation in TCF7L2 teach us about the pathogenesis of Type 2 Diabetes? Metab Syndr Relat Disord. 2018; 16(8):383–389.
33 33. Laurenti MC et al. Diabetes‐associated genetic variation in TCF7L2 alters pulsatile insulin secretion in humans. JCI Insight. 2020; 5(7).
34 34. Meier JJ, Veldhuis JD, and Butler PC. Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes. 2005; 54(6):1649–1656.
35 35. Smushkin G et al. Diabetes‐associated common genetic variation and its association with GLP‐1 concentrations and response to exogenous GLP‐1. Diabetes. 2012; 61(5):1082–1089.
36 36. Adams JD et al. Fasting glucagon concentrations are associated with longitudinal decline of beta‐cell function in non‐diabetic humans. Metabolism. 2020; 105:154175.
37 37. Selvin E et al. Short‐term variability in measures of glycemia and implications for the classification of diabetes. Arch Intern Med. 2007; 167(14):1545–1551.
38 38. Ko GT et al. The reproducibility and usefulness of the oral glucose tolerance test in screening for diabetes and other cardiovascular risk factors. Ann Clin Biochem. 1998; 35 (Pt 1):62–67.
39 39. Meijnikman AS et al. Not performing an OGTT results in significant underdiagnosis of (pre)diabetes in a high risk adult Caucasian population. Int J Obes (Lond). 2017; 41(11):1615–1620.
40 40. Guo F, Moellering DR, and Garvey WT. Use of HbA1c for diagnoses of diabetes and prediabetes: comparison with diagnoses based on fasting and 2‐hr glucose values and effects of gender, race, and age. Metab Syndr Relat Disord. 2014; 12(5):258–268.
41 41. Lorenzo C et al. A1C between 5.7 and 6.4% as a marker for identifying pre‐diabetes, insulin sensitivity and secretion, and cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care. 2010; 33(9):2104–2109.
42 42. Tuomilehto J. Point: a glucose tolerance test is important for clinical practice. Diabetes Care. 2002; 25(10):1880–1882.
43 43. Dinneen SF et al. Effects of changing diagnostic criteria on the risk of developing diabetes. Diabetes Care. 1998; 21(9):1408–1413.
44 44. Udler MS et al. Genetic risk scores for diabetes diagnosis and precision medicine. Endocr Rev. 2019; 40(6):1500–1520.
45 45. Han SJ et al. Incidence and predictors of type 2 diabetes among Koreans: a 12‐year follow up of the Korean Genome and Epidemiology Study. Diabetes Res Clin Pract. 2017; 123:173–180.
46 46. Zhang X et al. A1C level and future risk of diabetes: a systematic review. Diabetes Care. 2010; 33(7):1665–1673.
47 47. Hulman A et al. Glucose patterns during an oral glucose tolerance test and associations with future diabetes, cardiovascular disease and all‐cause mortality rate. Diabetologia. 2018; 61(1):101–107.
48 48. Abdul‐Ghani MA et al. One‐hour plasma glucose concentration and the metabolic syndrome identify subjects at high risk for future type 2 diabetes. Diabetes Care. 2008; 31(8):1650–1655.
49 49. Abdul‐Ghani MA et al. Fasting versus postload plasma glucose concentration and the risk for future type 2 diabetes: results from the Botnia Study. Diabetes Care. 2009; 32(2):281–286.
50 50. Peddinti G et al. 1‐hour post‐OGTT glucose improves the early prediction of type 2 diabetes by clinical and metabolic markers. J Clin Endocrinol Metab. 2019; 104(4):1131–1140.
51 51. Peddinti G et al. Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia. 2017; 60(9):1740–1750.
52 52. Priya M et al. 1‐hour venous plasma glucose and incident prediabetes and diabetes in Asian Indians. Diabetes Technol Ther. 2013; 15(6):497–502.
53 53. Wu S et al. Transition from pre‐diabetes to diabetes and predictors of risk in Mexican‐Americans. Diabetes Metab Syndr Obes. 2017; 10:491–503.
54 54. Abdul‐Ghani MA et al. What is the best predictor of future type 2 diabetes? Diabetes Care. 2007; 30(6):1544–1548.
55 55. Gabir MM et al. Plasma glucose and prediction of microvascular disease and mortality: evaluation of 1997 American Diabetes Association and 1999 World Health Organization criteria for diagnosis of diabetes. Diabetes Care. 2000; 23(8):1113–1118.
56 56. Diabetes Prevention Program Research Group. The prevalence of retinopathy in impaired glucose tolerance and recent‐onset diabetes in the Diabetes Prevention Program. Diabet Med. 2007; 24(2):137–144.
57 57. Colagiuri S et al. Glycemic thresholds for diabetes‐specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care. 2011; 34(1):145–150.
58 58. Tapp RJ et al. Diagnostic thresholds for diabetes: the association of retinopathy and albuminuria with glycaemia. Diabetes Res Clin Pract. 2006; 73(3):315–321.
59 59. Plantinga LC et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol. 2010;