Скачать книгу

здано в интеллектуальной издательской системе Ridero

      Введение

      В середине 20 века в мировой сельскохозяйственной практике окончательно сформировались технологии интенсивного индустриального возделывания растений как сырья для пищевой индустрии и животноводства.

      Применение широкого спектра минеральных удобрений, химических средств защиты растений, органических удобрений и технологий обработки почвы практически достигли своего совершенства, определяющего урожайность на уровне 70—80% от генетического потенциала сорта. Однако, одновременно с этим выявились негативные тренды в природопользовании сельскохозяйственных угодьями, связанными с неуклонным снижением качества почв.

      Объективно появилась потребность в повышении урожайности методами, независимыми от внесения в почву минеральных и органических удобрений, использования химических средств защиты растений.

      Методы генетической модификаций растений, несмотря на явные успехи в повышении урожайности, повышении резистентности к неблагоприятным факторам окружающей среды, включая инвазионные биологические, встретили жесткое сопротивление социума. В основном из-за не изученности отдаленных последствий на человека изменений генетического кода растений, употребляемых в пищу.

      Внимание исследователей и практиков сх-производства привлекли методы стимуляции урожайности, не связанные с генетической модификацией растений, способные реализовать генетический и физиологический потенциал уже заложенный в существующие сорта сельскохозяйственных растений, полученные методами классической селекционной работы.

      Наибольший интерес с точки зрения получения экологически чистой продукции имеют физические факторы воздействия на растения, а точнее на их семена, клубни, луковицы, проростки или взрослые растения на разных фазах развития.

      В качестве таких факторов исследовались электромагнитные поля различного диапазона: жесткое гамма-излучение, рентгеновское, ультрафиолетовое, видимое оптическое, инфракрасное, СВЧ-излучение, радиочастотное, магнитное и электрическое поле, облучение заряженными элементарными частицами и ионами различных элементов, гравитационным воздействием и т. д.

      Каждый из выше перечисленных физических факторов воздействия обеспечивается своим специализированным оборудованием, часто весьма сложно устроенным и дорогим.

      Например, гамма и рентгеновское излучение небезопасно для здоровья и жизни человека и потому мало пригодно для эксплуатации в реальных условиях сельскохозяйственного производства.

      Это же частично относится к ультрафиолетовому излучению, оптическому видимому лазерному излучению, бетта-излучению, СВЧ-излучению, радиочастотному облучению. Проблемы эксплуатации и безопасности примерно те же самые.

      Остается совсем немного безопасных физических факторов, которые смогут достаточно безболезненно прижиться в реальном сельскохозяйственном производстве. Это магнитные и электрические поля, объектом воздействия которых являются семена, клубни, луковицы, черенки и проростки растений. Итогом воздействия этих физических факторов в оптимальных дозах является более полная реализация генетического и физиологического потенциала растений, выражающееся в повышении урожая и его качества.

      Активные исследования влияния магнитного и электрического поля на семена растений, урожайность и качество урожая начались с СССР, США, Канаде, Франции в середине 50-х годов 20-го века. Первыми стали на практике в больших промышленных масштабах использовать электромагнитные установки для обработки семян сельхозпроизводители Канады.

      Так в 1970 г в провинции Альберта, одном из основных зерновых регионов Канады электромагнитной обработке подвергались семена для площади более 20.000 га. Затем в различных регионах СССР в период 1980—1992 гг. на десятках тысяч гектаров проводились испытания и практическое использование электромагнитной обработки семян. Зафиксированы многочисленные положительные результаты при крайне низких эксплуатационных затратах (менее 1$ на тонну обработанных семян).

      Средняя величина повышения урожайности зерновых культур (пшеница, рожь, ячмень, овес, кукуруза) составила 10—12%. Но, были и более высокие результаты: повышение урожайности зерновых культур на 18—22%, овощных культур на 22—30%.

      Повышается также и качество урожая. Например, содержание клейковины в зерне, масла в семенах подсолнечника, сахара в корнеплодах кормовой и сахарной свёклы, каротина в моркови.

      Для такой важной и массовой культуры как картофель среднее повышение урожайности составляет 18—20%. Увеличивается лёжкость картофеля в период осенне-зимнего хранения, за счет увеличения толщины защитной кожуры клубней именно в период уборки, а не в период хранения. Это приводит к снижению потерь при хранении до 4—5%.

      Повышение урожайности и качества урожая происходит только при определенных параметрах электромагнитных полей, таких как длительность воздействия, частотный диапазон, плотность мощности, пространственные характеристики электромагнитного

Скачать книгу