Скачать книгу

что кроме всего вышесказанного пифагорейцы развили интерес к математике. В «Метафизике» Аристотель пишет: «… так называемые пифагорейцы, занявшись математическими науками, впервые двинули их вперед и, воспитавшись на них, стали считать их начала началами всех вещей»{20}.

      Возможно, их особое внимание к математике было вызвано наблюдением за музыкой. Они заметили, что если во время игры на струнном инструменте щипнуть одновременно две струны одинаковой толщины, состава и натяжения, то приятный звук получается только в том случае, если длины струн относятся друг к другу как соотношение небольших целых чисел. Самый простой случай – когда одна струна наполовину короче второй. Сейчас мы говорим, что звучание двух струн расходится на октаву, и мы обозначаем издаваемый ими звук одной и той же буквой алфавита. Если одна струна составляет две трети длины другой, то проигрываются две ноты, интервал между которыми составляет квинту, имеющую достаточно гармоничное звучание. Если одна струна составляет три четверти длины другой, они производят гармоничное звучание, которое называется квартой. Напротив, если длины струн не соотносятся как небольшие целые числа (например, длина одной струны составляет 100 000/314 159 длины другой) или вообще не попадают в множество целых чисел, то получается неприятный, режущий ухо звук. Сейчас мы знаем, что для этого есть две причины: частота звуковых волн, производимых двумя струнами одновременно, и совпадение обертонов, производимых каждой струной (см. техническое замечание 3). Пифагорейцы ничего этого не понимали, как и никто другой, пока в XVII в. не появилась работа французского естествоиспытателя-священника Марена Мерсенна. Вместо этого, по Аристотелю, пифагорейцы «… всю вселенную признали гармонией и числом»{21}. Эта идея имела долгую жизнь. Например, Цицерон в своем диалоге «О государстве» рассказывает историю о том, как великий римский полководец Сципион Африканский знакомит своего внука с музыкой сфер.

      Большего прогресса пифагорейцы достигли, скорее, в чистой математике, чем в физике. Все знают теорему Пифагора о том, что площадь квадрата, одной из сторон которого является гипотенуза прямоугольного треугольника, равна сумме площадей двух квадратов, стороны которых являются катетами этого треугольника. Но неизвестно, кто именно из пифагорейцев доказал эту теорему и как он это сделал. Ее можно очень просто доказать, основываясь на теории соотношений, которая принадлежит пифагорейцу Архиту Тарентскому, современнику Платона (см. техническое замечание 4). В теореме 46 Первой книги «Начал» Евклида приводится более сложное доказательство. Кстати, Архит решил знаменитую задачу, которая до него оставалась нерешенной: как, имея куб и используя чисто геометрические методы, построить куб, в два раза больший по объему.

      Теорема Пифагора ведет к другому великому открытию о том, что геометрические построения могут привести к соотношениям, которые

Скачать книгу


<p>20</p>

Аристотель. Метафизика. С. 26–27.

<p>21</p>

Там же.