Скачать книгу
свое контрастное подобие в числе как
чистом отношении[54]. Если античный мир, космос, исходя из его глубокой потребности в зримой ограниченности, может быть определен как исчисленная сумма материальных вещей, то
наше мироощущение осуществилось в картине бесконечного пространства, в котором все зримое, как обусловленное в противоположность необусловленному, воспринимается едва ли не как действительность второго порядка.
Его символом оказывается решающее понятие
функции, и намека на которое нет ни в одной другой культуре. Функция – это отнюдь не расширение какого бы то ни было из существующих понятий числа; она представляет собой полное его преодоление. Тем самым для действительно
значимой математики Западной Европы утрачивает ценность не только евклидова, а значит, «общечеловеческая», основанная на повседневном опыте геометрия детей и профанов, но и архимедова сфера элементарного счета, арифметика. Отныне существует лишь абстрактный анализ. Для людей античности геометрия и арифметика были замкнутыми в самих себе и совершенными науками высшего ранга; процедуры той и другой были наглядными, имевшими дело с величинами через черчение или счет. Для нас же они – лишь практические вспомогательные средства повседневной жизни. Два античных метода вычисления величин, сложение и умножение, эти братья графических построений, полностью исчезают в бесконечности функциональных процессов. Сама степень, являющаяся поначалу лишь числовым обозначением определенной группы умножений (для произведений одинаковых величин), оказывается – в новом символе экспоненты (логарифма) и его применении в комплексной, отрицательной, дробной форме – всецело отделенной от понятия величины и переведенной в мир трансцендентных отношений, который должен был оставаться недоступным грекам, знавшим лишь две положительные, целочисленные степени в качестве представителей поверхностей и тел, – довольно будет привести такие выражения, как
Все глубокие по мысли порождения, которые начиная с Возрождения стремительно следовали одно за другим, – мнимые и комплексные числа, введенные Кардано уже в 1550 г., бесконечные ряды, надежно обоснованные в плане теории великим открытием теоремы Ньютона о биноме, введенные ок. 1610 г. логарифмы, дифференциальная геометрия, открытый Лейбницем определенный интеграл, множество как новая числовая единица, намек на что имелся уже у Декарта, такие новые процессы, как неопределенное интегрирование, разложение функций в ряды, даже в бесконечные ряды других функций, – все это есть не что иное, как победы, одержанные над коренящимся в нас вульгарно-чувственным ощущением числа, которое следовало преодолеть исходя из духа новой математики с ее задачей воплощения нового мироощущения. Не было доныне второй такой культуры, которая окружала бы таким благоговением достижения другой, находилась бы под таким сильным ее влиянием в научном смысле, как это происходит с западной культурой по отношению
Скачать книгу