ТОП просматриваемых книг сайта:
Sustainable Nanotechnology. Группа авторов
Читать онлайн.Название Sustainable Nanotechnology
Год выпуска 0
isbn 9781119650317
Автор произведения Группа авторов
Издательство John Wiley & Sons Limited
20 20 Iannazzo, D., Pistone, A., Salamò, M. et al. (2017). Graphene quantum dots for cancer targeted drug delivery. International Journal of Pharmaceutics 518: 185–192.
21 21 Zhao, M.X., Zhu, B.J., Yao, W.J., and Chen, D.F. (2016). Therapeutic effect of quantum dots for cancer treatment. RSC Advances 6: 113791–113795.
22 22 McHugh, K.J., Jing, L., Behrens, A.M. et al. (2018). Biocompatible semiconductor quantum dots as cancer imaging agents. Advanced Materials 30: 1706356.
23 23 Ranjbar‐Navazi, Z., Eskandani, M., Johari‐Ahar, M. et al. (2018). Doxorubicin‐conjugated D‐glucosamine‐ and folate‐ bi‐functionalisedInP/ZnS quantum dots for cancer cells imaging and therapy. Journal of Drug Targeting 26: 267–277.
24 24 Luo, M., Cheng, W., Zeng, X. et al. (2019). Folic acid‐functionalized black phosphorus quantum dots for targeted chemo‐photothermal combination cancer therapy. Pharmaceutics 11: 242.
25 25 Chen, B.Q., Kankala, R.K., Zhang, Y. et al. (2020). Gambogic acid augments black phosphorus quantum dots (BPQDs)‐based synergistic chemo‐photothermal therapy through downregulating heat shock protein expression. Chemical Engineering Journal 390: 124312.
26 26 Shang, Y., Wang, Q., Wu, B. et al. (2019). Platelet‐membrane‐camouflaged black phosphorus quantum dots enhance anticancer effect mediated by apoptosis and autophagy. ACS Applied Materials & Interfaces 11: 28254–28266.
27 27 Sahoo, N.G., Bao, H., Pan, Y. et al. (2011). Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water‐soluble anticancer drug: a comparative study. Chemical Communications 47: 5235–5237.
28 28 Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354: 56–58.
29 29 Son, K.H., Hong, J.H., and Lee, J.W. (2016). Carbon nanotubes as cancer therapeutic carriers and mediators. International Journal of Nanomedicine 11: 5163–5185.
30 30 Elhissi, A.M.A., Ahmed, W., Hassan, I.U. et al. (2012). Carbon nanotubes in cancer therapy and drug delivery. Journal of Drug Delivery 2012: 1–10.
31 31 Xie, J., Teng, L., Yang, Z. et al. (2013). A polyethylenimine‐linoleic acid conjugate for antisense oligonucleotide delivery. BioMed Research International 2013: 1–7.
32 32 De Faria, P.C.B., Dos Santos, L.I., Coelho, J.P. et al. (2014). Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8+ T cell response and protection against cancer. Nano Letters 14: 5458–5470.
33 33 Hassan, H.A.F.M., Diebold, S.S., Smyth, L.A. et al. (2019). Application of carbon nanotubes in cancer vaccines: achievements, challenges and chances. Journal of Controlled Release 297: 79–90.
34 34 Liu, C., Wang, D., Zhan, Y. et al. (2018). Switchable photoacoustic imaging of glutathione using MnO 2 nanotubes for cancer diagnosis. ACS Applied Materials & Interfaces 10: 44231–44239.
35 35 Berber, M.R., Elkhenany, H., Hafez, I.H. et al. (2020). Efficient tailoring of platinum nanoparticles supported on multiwalled carbon nanotubes for cancer therapy. Nanomedicine 15: 793–808.
36 36 Singh, S., Mehra, N.K., and Jain, N.K. (2016). Development and characterization of the paclitaxel loaded riboflavin and thiamine conjugated carbon nanotubes for cancer treatment. Pharmaceutical Research 33: 1769–1781.
37 37 Layton, E., McNamar, R., Hasanjee, A.M. et al. (2017). The effects of single‐walled carbon nanotubes on cancer cell migration using a pancreatic tumor model. In: Biophotonics Immune Responses XII (ed. W.R. Chen), 7. The International Society for Optics and Photonics (SPIE).
38 38 Qiao, H., Zhu, Z., Fang, D. et al. (2018). Redox‐triggered mitoxantrone prodrug micelles for overcoming multidrug‐resistant breast cancer. Journal of Drug Targeting 26: 75–85.
39 39 Zhang, X. (2018). Mini‐review: nanotechnology forms of drug delivery. Journal of Drug Delivery and Therapeutics 8: 275–277.
40 40 Ravichandran, S. (2010). Green chemistry – a potential tool for chemical synthesis. International Journal of ChemTech Research 2: 2188–2191.
41 41 Jahangirian, H., Lemraski, E.G., Webster, T.J. et al. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. International Journal of Nanomedicine 12: 2957–2978.
42 42 Li, X., Gong, Y., Zhou, X. et al. (2016). Facile synthesis of soybean phospholipid‐encapsulated MoS2 nanosheets for efficient in vitro and in vivo photothermal regression of breast tumor. International Journal of Nanomedicine 11: 1819–1833.
43 43 Pozdnyakov, A.S., Emel’yanov, A.I., Kuznetsova, N.P. et al. (2016). Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity. International Journal of Nanomedicine 11: 1295–1304.
44 44 Chen, Z., Zhang, T., Wu, B., and Zhang, X. (2016). Insights into the therapeutic potential of hypoxia‐inducible factor‐1α small interfering RNA in malignant melanoma delivered via folate‐decorated cationic liposomes. International Journal of Nanomedicine 11: 991–1002.
45 45 Chen, L.C., Chen, Y.C., Su, C.Y. et al. (2016). Development and characterization of self‐assembling lecithin‐based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. International Journal of Nanomedicine 11: 1557–1566.
46 46 Erdal, M.S., Ozhan, G., Mat, M.C. et al. (2016). Colloidal nanocarriers for the enhanced cutaneous delivery of naftifine: characterization studies and in vitro and in vivo evaluations. International Journal of Nanomedicine 11: 1027–1037.
47 47 Bellan, L.M., Wu, D., and Langer, R.S. (2011). Current trends in nanobiosensor technology. Wiley Interdisciplinary Reviews, Nanomedicine and Nanobiotechnology 3: 229–246.
48 48 Kim, Y.G., Moon, S., Kuritzkes, D.R., and Demirci, U. (2009). Quantum dot‐based HIV capture and imaging in a microfluidic channel. Biosensors & Bioelectronics 25: 253–258.
49 49 Cao, Q., Teng, Y., Yang, X. et al. (2015). A label‐free fluorescent molecular beacon based on DNA‐Ag nanoclusters for the construction of versatile Biosensors. Biosensors & Bioelectronics 74: 318–321.
50 50 Altay, C., Senay, R.H., Eksin, E. et al. (2017). Development of amino functionalized carbon coated magnetic nanoparticles and their application to electrochemical detection of hybridization of nucleic acids. Talanta 164: 175–182.
51 51 Mokhtarzadeh, A., Eivazzadeh‐Keihan, R., Pashazadeh, P. et al. (2017). Nanomaterial‐based biosensors for detection of pathogenic virus. Trends in Analytical Chemistry 97: 445–457.
52 52 Keshavarzi, M., Darijani, M., Momeni, F. et al. (2017). Molecular imaging and oral cancer diagnosis and therapy. Journal of Cellular Biochemistry 118: 3055–3060.
53 53 Keshavarzi, M., Sorayayi, S., JafarRezaei, M. et al. (2017). MicroRNAs‐based imaging techniques in cancer diagnosis and therapy. Journal of Cellular Biochemistry 118: 4121–4128.
54 54 Jafari, S.H., Saadatpour, Z., Salmaninejad, A. et al. (2018). Breast cancer diagnosis: imaging techniques and biochemical markers. Journal of Cellular Physiology 233: 5200–5213.
55 55 Guo, J., Yuan, C., Yan, Q. et al. (2018). An electrochemical biosensor for microRNA‐196a detection based on cyclic enzymatic signal amplification and template‐free DNA extension reaction with the adsorption of methylene blue. Biosensors & Bioelectronics 105: 103–108.
56 56 Liu, C., Chen, C., Li, S. et al. (2018). Target‐triggered catalytic hairpin assembly‐induced core‐satellite nanostructures for high‐sensitive “off‐to‐on” SERS detection of intracellular MicroRNA. Analytical Chemistry 90: 10591–10599.
57 57 de Souza, M.F., de Syllos Cólus, I.M., Fonseca, A.S. et al. (2017). Abstract 1476: Cell‐free miR‐141 as a molecular marker for prostate cancer metastasis. https://cancerres.aacrjournals.org/content/77/13_Supplement/1476