ТОП просматриваемых книг сайта:
Wearable and Neuronic Antennas for Medical and Wireless Applications. Группа авторов
Читать онлайн.Название Wearable and Neuronic Antennas for Medical and Wireless Applications
Год выпуска 0
isbn 9781119792567
Автор произведения Группа авторов
Издательство John Wiley & Sons Limited
6 Chapter 6Figure 6.1 System model for RF EH NOMA MEC network.Figure 6.2 Time flowchart of the considered RF EH NOMA MEC network.Figure 6.3 Impacts of the time switching ratio on SCP of different schemes.Figure 6.4 Impacts of the power allocation coefficient on SCP of different schem...Figure 6.5 The convergence of optimization algorithms.Figure 6.6 SCP comparison of different methods with/without optimal algorithms.
7 Chapter 7Figure 7.1 Schematic of 6T based CNTFET SRAM memory cell.Figure 7.2 Schematic of 7T CNTFET based SRAM memory cell.Figure 7.3 Structure of 8T CNTFET based SRAM cell.Figure 7.4 Schematic of 9T based CNTFET SRAM memory cell.Figure 7.5 Schematic of 10T CNTFET SRAM cell.Figure 7.6 Simulation results of 6T, 7T and 9T based CNTFET SRAM memory cell.Figure 7.7 Simulated transient response of 8T based CNTFET SRAM cell.Figure 7.8 Simulation results of 10T CNTFET based SRAM cell.Figure 7.9 Average power consumption versus chiral vector.Figure 7.10 Average power consumption versus channel length.Figure 7.11 Average power consumption versus supply voltage.Figure 7.12 Average power consumption versus temperature.Figure 7.13 Leakage power versus channel length.Figure 7.14 Leakage power v/s chiral vector.Figure 7.15 Leakage power versus supply voltage.Figure 7.16 Delay versus supply voltage.Figure 7.17 Butterfly curve for CNTFET SRAM cell in hold mode.Figure 7.18 Butterfly curve for SRAM in read mode.Figure 7.19 Butterfly curve for SRAM in write mode.Figure 7.20 HSNM variations with supply voltage.Figure 7.21 RSNM variations with power supply.Figure 7.22 WSNM variations with power supply.Figure 7.23 N-curve for proposed 6T SRAM cell.Figure 7.24 SVNM variations with power supply.Figure 7.25 SINM variations with power supply.Figure 7.26 WTV variations with supply voltage.Figure 7.27 WTI variations with supply voltage.
8 Chapter 8Figure 8.1 Proposed antenna structure.Figure 8.2 On-body [green dotted line] and free space [blue line] reflection coe...Figure 8.3 Reflection coefficient during bending at 2.4 GHz ISM band.Figure 8.4 Reflection coefficient during bending at 5.8 GHz ISM band.Figure 8.5 (a) Surface current distributions at 2.4 GHz.Figure 8.5 (b) Surface current distributions at 5.8 GHz.Figure 8.6 (a) Specific absorption rate of antenna placed on forearm at frequenc...Figure 8.6 (b) Specific absorption rate of antenna placed on upper arm at freque...Figure 8.6 (c) Specific absorption rate of antenna placed on thigh at frequency ...Figure 8.6 (d) Specific absorption rate of antenna placed on chest at frequency ...
9 Chapter 9Figure 9.1 The proposed antenna designed in HFSS simulation software.Figure 9.2 Edge mount coaxial connector for feeding, (a) without shorting pins a...Figure 9.3 Fabrication of antenna using LPKF pro tool.Figure 9.4 The equivalent circuit approach of antenna (notch-enabled).Figure 9.5 The equivalent circuit of patch antenna using notch.Figure 9.6 the equivalent circuit of shorting pin enabled antenna withslot.Figure 9.7 Plot of return loss vs frequency of designed antenna.Figure 9.8 Measured, simulated plot of return loss versus frequency of antenna.Figure 9.9 The plot of simulated E-plane, H-plane of radiation of antenna.Figure 9.10 Plot of measured E/H-plane radiation pattern of antenna.
10 Chapter 10Figure 10.1 Main antenna geometry.Figure 10.2 (a) Uppersight, and (b) lowestsight.Figure 10.3 S-parameter (No notching).Figure 10.4 S-parameter for different slots dimension.Figure 10.5 VSWR.Figure 10.6 3-D radiation patterns.
11 Chapter 11Figure 11.1 OFDM transmitter and receiver systems.Figure 11.2 POPS philosophy of the waveforms. Optimization by the maximization o...Figure 11.3 Validation of derived analytical outage probabilities via simulation...Figure 11.4 Outage probability performance of the proposed method.
12 Chapter 12Figure 12.1 Body centric communication [4].Figure 12.2 S11 for the “implanted antenna inside the head of the male anatomica...Figure 12.3 Distinct techniques for flexible antennas: (a) PET substrate and sil...Figure 12.4 Embroidery machine [65].Figure 12.5 Prototype of embroidered UWB antenna with electro conductive polyest...Figure 12.6 “E-Caption: smart and sustainable coat. (a) Design of the coat and (...Figure 12.7 (a) Fabrication flow chart (b) specialized DMP 2831 printer.Figure 12.8 (a) Fabrication process (b) UWB antenna printed on substrate by etch...Figure 12.9 Photograph of the fabricated antenna prototype and of the measuremen...Figure 12.10 Various wearable devices placed on different locations on human bod...
13 Chapter 13Figure 13.1 Representation of the comparison between the original trajectory, UK...Figure 13.2 X position error.Figure 13.3 Y position error.
Guide
1 Cover
5 Preface
7 Index
Pages
1 v
2 ii
3 iii
4 iv
5 xi
6 1
7 2
8 3
9 4
10 5
11 6
12 7
13 8
14 9
15 11
16 12
17 13
18