ТОП просматриваемых книг сайта:
φ – Число Бога. Золотое сечение – формула мироздания. Марио Ливио
Читать онлайн.Название φ – Число Бога. Золотое сечение – формула мироздания
Год выпуска 2002
isbn 978-5-17-094497-2
Автор произведения Марио Ливио
Жанр Математика
Серия Золотой фонд науки
Изобретательное (хотя, пожалуй, не совсем логичное) объяснение, почему пентаграмма связывалась со здоровьем, предложил А. де ла Фей в своей книге «Пифагорейская пентаграмма, ее распространенность и применение в клинописи» (A. de la Fuÿe. Le Pentagramme Pythagoricien, Sa Diffusion, Son Emploi dans le Syllabaire Cuneiform, 1934). Де ла Фей предполагает, что пентаграмма символизирует греческую богиню здоровья Гигию, а пять лучей звезды – это схематическое изображение богини (рис. 9).
Рис. 9
Рис. 10
Кроме того, пентаграмма тесно связана с правильным пятиугольником – геометрической фигурой с пятью равными сторонами и равными углами (рис. 10). Если соединить все вершины правильного пятиугольника диагоналями, получится пентаграмма. Кроме того, диагонали образуют еще и маленький пятиугольник в центре, а диагонали этого пятиугольника образуют пентаграмму и пятиугольник еще меньше (рис. 10). Продолжать это можно до бесконечности, создавая пятиугольники и пентаграммы все меньше и меньше. Поразительное свойство всех этих фигур состоит в том, что если посмотреть на получившиеся отрезки в порядке убывания длины (на рисунке они помечены a, b, c, d, e, f), можно с легкостью, при помощи элементарной геометрии, доказать, что каждый отрезок меньше предыдущего на множитель, в точности равный золотому сечению – числу φ. То есть отношение длин а и b – это число φ, отношение длин b и c – тоже число φ и т. д. А главное, можно опереться на тот факт, что процесс создания череды вписанных друг в друга пентаграмм и пятиугольников можно продолжать бесконечно, строить фигуры все меньших и меньших размеров – чтобы упорно доказывать, что диагональ и сторона пятиугольника несоизмеримы, то есть отношение их длин (равное φ) невозможно выразить отношением двух целых чисел. А это значит, что им нельзя подобрать никакую общую единицу измерения – такую, чтобы диагональ пятиугольника содержала целое число этих единиц измерения и чтобы сторона пятиугольника тоже содержала целое число таких же единиц измерения (для читателей, более склонных к точным наукам, в Приложении 2