ТОП просматриваемых книг сайта:
Tao Jiang
Список книг автора Tao JiangАннотация
Proceedings of a symposium sponsored by the Pyrometallurgy Committee and the Energy Committee of the Extraction and Processing Division of TMS (The Minerals, Metals & Materials Society) Held during the TMS 2012 Annual Meeting & Exhibition Orlando, Florida, USA March 11-15, 2012
Аннотация
The technology, operation, energy, environmental, analysis, and future development of the metallurgical industries utilizing high temperature processes are covered in the book. The innovations on the extraction and production of ferrous and nonferrous metals, alloys, and refractory and ceramic materials, the heating approaches and energy management, and the treatment and utilizations of the wastes and by-products are the topics of special interests. This book focuses on the following issues: High Efficiency New Metallurgical Process and Technology Fundamental Research of Metallurgical Process Alloys and Materials Preparation Direct Reduction and Smelting Reduction Coking, New Energy and Environment Utilization of Solid Slag/Wastes and Complex Ores Characterization of High Temperature Metallurgical Process
Аннотация
The analysis, development, and/or operation of high temperature processes that involve the production of ferrous and nonferrous metals, alloys, and refractory and ceramic materials are covered in the book. The innovative methods for achieving impurity segregation and removal, by-product recovery, waste minimization, and/or energy efficiency are also involved. Eight themes are presented in the book: 1: High Efficiency New Metallurgical Process and Technology 2: Fundamental Research of Metallurgical Process 3: Alloys and Materials Preparation 4: Direct Reduction and Smelting Reduction 5: Coking, New Energy and Environment 6: Utilization of Solid Slag/Wastes and Complex Ores 7: Characterization of High Temperature Metallurgical Process
Аннотация
In the last decade, global metallurgical industries have experienced fast and prosperous growth. High temperature metallurgical technology is the backbone to support the technical, environmental, and economical needs for the growth. This symposium provides a stage to introduce the advancements and developments of new high temperature metallurgical technologies and their applications to the areas of processing of minerals, extraction of metals, preparation of refractory and ceramic materials, sintering and synthesis of fine particles, treatment and recycling of slag and wastes, and saving of energy and protection of environment.
Аннотация
The analysis, development, and/or operation of high temperature processes that involve the production of ferrous and nonferrous metals, alloys, and refractory and ceramic materials are covered in the book. The innovative methods for achieving impurity segregation and removal, by-product recovery, waste minimization, and/or energy efficiency are also involved. Eight themes are presented in the book: 1: High Efficiency New Metallurgical Technology 2: Fundamental Research of Metallurgical Process 3: Alloy and Materials Preparation 4: Roasting, Reduction, and Smelting 5: Sintering of Ores and Powder 6: Simulation and Modeling 7: Treatment of Solid Slag/Wastes and Complex Ores 8: Microwave Heating, Energy, and Environment
Аннотация
High Temperature Metallurgical Processing contains the proceedings of the Second International Symposium on Thermal Processing of Minerals, Metals and Materials. This symposium explores physical and chemical transformations in materials that have been designed to facilitate the recovery of valuable metals or produce other useful materials. Representatives from both industry and academia focused on the latest innovative high temperature technologies. Because high temperature processes require high energy input, the presenters addressed the need for sustainable technologies that could provide low energy consumption and low pollution emissions. The symposium also examined the thermodynamics and kinetics of chemical reactions, phase transformations at elevated temperatures, and characterization of materials used or produced in high temperature processing.