Аннотация

A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.

Аннотация

A comprehensive and invaluable guide to 5G technology, implementation and practice in one single volume. For all things 5G, this book is a must-read. Signal processing techniques have played the most important role in wireless communications since the second generation of cellular systems. It is anticipated that new techniques employed in 5G wireless networks will not only improve peak service rates significantly, but also enhance capacity, coverage, reliability , low-latency, efficiency, flexibility, compatibility and convergence to meet the increasing demands imposed by applications such as big data, cloud service, machine-to-machine (M2M) and mission-critical communications. This book is a comprehensive and detailed guide to all signal processing techniques employed in 5G wireless networks. Uniquely organized into four categories, New Modulation and Coding, New Spatial Processing, New Spectrum Opportunities and New System-level Enabling Technologies, it covers everything from network architecture, physical-layer (down-link and up-link), protocols and air interface, to cell acquisition, scheduling and rate adaption, access procedures and relaying to spectrum allocations. All technology aspects and major roadmaps of global 5G standard development and deployments are included in the book. Key Features: Offers step-by-step guidance on bringing 5G technology into practice, by applying algorithms and design methodology to real-time circuit implementation, taking into account rapidly growing applications that have multi-standards and multi-systems. Addresses spatial signal processing for 5G, in particular massive multiple-input multiple-output (massive-MIMO), FD-MIMO and 3D-MIMO along with orbital angular momentum multiplexing, 3D beamforming and diversity. Provides detailed algorithms and implementations, and compares all multicarrier modulation and multiple access schemes that offer superior data transmission performance including FBMC, GFDM, F-OFDM, UFMC, SEFDM, FTN, MUSA, SCMA and NOMA. Demonstrates the translation of signal processing theories into practical solutions for new spectrum opportunities in terms of millimeter wave, full-duplex transmission and license assisted access. Presents well-designed implementation examples, from individual function block to system level for effective and accurate learning. Covers signal processing aspects of emerging system and network architectures, including ultra-dense networks (UDN), software-defined networks (SDN), device-to-device (D2D) communications and cloud radio access network (C-RAN).