Скачать книгу

обладает свойством A, но уже не обладает свойством В; допустим, наконец, что в евклидовом – как и в неевклидовом – пространстве прямая линия есть единственная линия, обладающая свойством А.

      Если бы это было так, то опыт мог бы решить выбор между гипотезами Евклида и Лобачевского. Представим себе, что мы констатировали бы, что известный конкретный предмет, доступный опыту, например пучок световых лучей, обладает свойством А; отсюда мы заключили бы, что он прямолинейный, и исследовали бы затем, обладает он свойством В или нет.

      Но это не так: не существует свойства, которое могло бы, как это свойство А, быть абсолютным критерием, позволяющим признать, что данная линия есть прямая, и отличить ее от всякой другой линии.

      Скажут, например, что это свойство следующее: «прямая линия есть такая линия, что фигура, часть которой она составляет, может двигаться без изменения взаимных расстояний ее точек, причем все точки этой линии остаются неподвижными».

      В самом деле, здесь мы имеем свойство, которое и в евклидовом и в неевклидовом пространстве принадлежит прямой и только прямой. Но как узнать на опыте, обладает ли этим свойством тот или другой конкретный предмет? Для этого понадобится измерить расстояния между некоторыми его точками, но как убедиться, что та конкретная величина, которую я измерил своим материальным прибором, в точности представляет собой абстрактное расстояние между этими точками?

      Таким образом, мы лишь отодвинули трудность.

      И действительно, свойство, которое я изложил, не есть свойство лишь одной прямой линии, оно есть свойство как прямой, так и расстояния. Чтобы оно могло служить абсолютным критерием, надо иметь возможность установить не только то, что оно не принадлежит никакой иной линии, кроме прямой, и принадлежит расстоянию, но еще то, что оно не принадлежит никакой другой линии, кроме прямой, и никакой другой величине, кроме расстояния. А именно это неверно.

      Поскольку невозможно указать конкретный опыт, который мог бы быть истолкован в евклидовой системе и не мог бы быть истолкован в системе Лобачевского, то я могу заключить: никогда никакой опыт не окажется в противоречии с постулатом Евклида, но зато и никакой опыт не будет никогда в противоречии с постулатом Лобачевского.

      5. Итак, евклидова (или неевклидова) геометрия никогда не может оказаться в прямом противоречии с опытом. Но этого недостаточно. Возникает вопрос: не может ли случиться, что ее можно будет согласовать с опытом лишь путем нарушения принципа достаточного основания и принципа относительности пространства?

      Объясняюсь подробнее. Рассмотрим какую-нибудь материальную систему; мы обратим внимание, с одной стороны, на «состояние» различных тел этой системы (например, на их температуру, электрический потенциал и т. д.), с другой стороны – на их положение в пространстве; и среди данных, которые позволяют определить это положение, мы различим еще взаимные расстояния этих тел, определяющие их относительные положения,

Скачать книгу