Аннотация

Gas hydrates in their natural environment and for potential industrial applications (Volume 2).

Аннотация

The aim of this book is to deepen the knowledge of dynamic evolution of professional practices (recomposition of knowledge and know-how, inter-relations, strategic positioning) taking place at the time of the injunction to energy efficiency in the design field, construction and management of real estate. From their experience feedback, the challenge of this book is to question the logic of innovation, to enlighten the dynamic learning and renewal of professional skills.

Аннотация

Energy and sustainability are two of the most important and often most misunderstood subjects in our world today. As these two subjects have grown in importance over the last few decades, interest in the Life Cycle Assessment (LCA) model has grown as well, as a potentially crucial tool in understanding and striving towards sustainability in energy systems. Not just wind and solar systems, but all energy systems, need to be understood through this model. Wind and solar power have the potential to decentralize the U.S. energy system by offering local communities electricity and economic support, depending on the scale and design of projects. Nevertheless, every energy technology potentially faces environmental costs, lay and expert opposition, and risks to public health. Engineers play a central role as designers, builders, and operators in energy systems. As they extend their expertise into electrical, mechanical and chemical fields, from fossil fuel-based systems to renewable energy systems, “sustainability” is steadily becoming one of the key criteria engineers apply in their work. This groundbreaking new study argues that engineering cultures foster sustainability by adopting assumptions and problem-solving practices as part of their identities when designing and building engineering projects. This work examines the politics of creating, utilizing, and modifying Life Cycle Assessment (LCA) in the construction of renewable energy systems. The only volume of its kind ever written, it is a must-have for any engineer, scientist, manager, or other professional working in or interested in Life Cycle Assessment and its relation to energy systems and impact on environmental and economic sustainability.

Аннотация

Allows the reader to deepen their understanding of various technologies for both fixed power supply installations of railway systems and for railway rolling stock This book explores the electric railway systems that play a crucial role in the mitigation of congestion and pollution caused by road traffic. It is divided into two parts: the first covering fixed power supply systems, and the second concerning the systems for railway rolling stock. In particular, after a historical introduction to the framework of technological solutions in current use, the authors investigate electrification systems for the power supply of rail vehicles, trams, and subways. Electrical Railway Transportation Systems explores the direct current systems used throughout the world for urban and suburban transport, which are also used in various countries for regional transport. It provides a study of alternating current systems, whether for power supply frequency or for special railway frequency, that are used around the world for the electrification of railway lines, long-distance lines, and high-speed lines. In addition, this resource: Analyzes multiple railway systems from a theoretical and realizable vantage point, with particular regard to functionality, electromagnetic compatibility, and interferences with other electrical systems Studies electric traction railway vehicles, presenting various types of drives and auxiliary devices currently in circulation Discusses solutions employed to ensure interoperability of vehicles that run along lines powered by different systems (e.g., DC and AC, at different frequencies) Electrical Railway Transportation Systems is an ideal text for graduate students studying the subject as well as for industry professionals working in the field.

Аннотация

Petroleum and natural gas still remain the single biggest resource for energy on earth. Even as alternative and renewable sources are developed, petroleum and natural gas continue to be, by far, the most used and, if engineering properly, the most cost-effective and efficient, source of energy on the planet. Contrary to some beliefs, the industry can, in fact, be sustainable, from an environmental, economic, and resource perspective. Petroleum and natural gas are, after all, natural sources of energy and do not have to be treated as pariahs. This groundbreaking new text describes hydrocarbons in basement formations, how they can be characterized and engineered, and how they can be engineered properly, to best achieve sustainability. Covering the basic theories and the underlying scientific concepts, the authors then go on to explain the best practices and new technologies and processes for utilizing basement formations for the petroleum and natural gas industries. Covering all of the hottest issues in the industry, from oil shale, tar sands, and hydraulic fracturing, this book is a must-have for any engineer working in the industry. This textbook is an excellent resource for petroleum engineering students, reservoir engineers, supervisors & managers, researchers and environmental engineers for planning every aspect of rig operations in the most sustainable, environmentally responsible manner, using the most up-to-date technological advancements in equipment and processes.

Аннотация

Consolidates the many different chemistries being employed to provide environmentally acceptable products through the upstream oil and gas industry This book discusses the development and application of green chemistry in the oil and gas exploration and production industry over the last 25 years – bringing together the various chemistries that are utilised for creating suitable environmental products. Written by a highly respected consultant to the oil and gas industry – it introduces readers to the principles and development of green chemistry in general, and the regulatory framework specific to the oil and gas sector in the North Sea area and elsewhere in the world. It also explores economic drivers pertaining to the application of green chemistry in the sector. Topics covered in Oilfield Chemistry and its Environmental Impact include polymer chemistry, surfactants and amphiphiles, phosphorus chemistry, inorganic salts, low molecular weight organics, silicon chemistry and green solvents. It also looks at sustainability in an extractive industry, examining the approaches used and the other methodologies that could be applied in the development of better chemistries, along with discussions about where the application of green chemistry is leading in this industry sector. Provides the reader with a ready source of reference when considering what chemistries are appropriate for application to oilfield problems and looking for green chemistry solutions Brings together the pertinent regulations which workers in the field will find useful, alongside the chemistries which meet the regulatory requirements Written by a well-known specialist with a combined knowledge of chemistry, manufacturing procedures and environmental issues Oilfield Chemistry and its Environmental Impact is an excellent book for oil and gas industry professionals as well as scientists, academic researchers, students and policy makers.

Аннотация

A COMPREHENSIVE REFERENCE TO THE MOST RECENT ADVANCEMENTS IN OFFSHORE WIND TECHNOLOGY Offshore Wind Energy Technology offers a reference based on the research material developed by the acclaimed Norwegian Research Centre for Offshore Wind Technology (NOWITECH) and material developed by the expert authors over the last 20 years. This comprehensive text covers critical topics such as wind energy conversion systems technology, control systems, grid connection and system integration, and novel structures including bottom-fixed and floating. The text also reviews the most current operation and maintenance strategies as well as technologies and design tools for novel offshore wind energy concepts. The text contains a wealth of mathematical derivations, tables, graphs, worked examples, and illustrative case studies. Authoritative and accessible, Offshore Wind Energy Technology: Contains coverage of electricity markets for offshore wind energy and then discusses the challenges posed by the cost and limited opportunities Discusses novel offshore wind turbine structures and floaters Features an analysis of the stochastic dynamics of offshore/marine structures Describes the logistics of planning, designing, building, and connecting an offshore wind farm Written for students and professionals in the field, Offshore Wind Energy Technology is a definitive resource that reviews all facets of offshore wind energy technology and grid connection.

Аннотация

A unique guide to the most important technical aspects of photovoltaic power generation with comprehensive analysis and author industry-experience Unique from other books in the area in that it explains profound theories in simple language, introduces widely used production equipment and processes for industry professionals, and explains the complete PV industry chain from material to power generation Has originated from the author’s practical industry experience, enabling the use of up-to-date information during this time of new development in the Chinese PV industry Content includes approximately 255 illustrations and 46 tables to help clarify complex theories.

Аннотация

Since the 90s, the Li-ion batteries are the most commonly used energy storage systems. The demand for performance and safety is constantly growing, current commercial batteries based liquid electrolytes or gels may not be able to meet the needs of emerging applications such as for electric and hybrid vehicles and renewable energy storage , and it is therefore necessary to develop advanced storage systems with characteristics such that the highest density of energy technology, long life, low cost of production, little or no maintenance and high safety of use. Batteries «all solid» are a technology of choice to meet these requirements. In this technology, the electrolyte separator between the two electrodes is no longer a liquid medium but a solid.

Аннотация

Bridges the knowledge gap between engineering and economics in a complex and evolving deregulated electricity industry, enabling readers to understand, operate, plan and design a modern power system With an accessible and progressive style written in straight-forward language, this book covers everything an engineer or economist needs to know to understand, operate within, plan and design an effective liberalized electricity industry, thus serving as both a useful teaching text and a valuable reference. The book focuses on principles and theory which are independent of any one market design. It outlines where the theory is not implemented in practice, perhaps due to other over-riding concerns. The book covers the basic modelling of electricity markets, including the impact of uncertainty (an integral part of generation investment decisions and transmission cost-benefit analysis). It draws out the parallels to the Nordpool market (an important point of reference for Europe). Written from the perspective of the policy-maker, the first part provides the introductory background knowledge required. This includes an understanding of basic economics concepts such as supply and demand, monopoly, market power and marginal cost. The second part of the book asks how a set of generation, load, and transmission resources should be efficiently operated, and the third part focuses on the generation investment decision. Part 4 addresses the question of the management of risk and Part 5 discusses the question of market power. Any power system must be operated at all times in a manner which can accommodate the next potential contingency. This demands responses by generators and loads on a very short timeframe. Part 6 of the book addresses the question of dispatch in the very short run, introducing the distinction between preventive and corrective actions and why preventive actions are sometimes required. The seventh part deals with pricing issues that arise under a regionally-priced market, such as the Australian NEM. This section introduces the notion of regions and interconnectors and how to formulate constraints for the correct pricing outcomes (the issue of «constraint orientation»). Part 8 addresses the fundamental and difficult issue of efficient transmission investment, and finally Part 9 covers issues that arise in the retail market. Bridges the gap between engineering and economics in electricity, covering both the economics and engineering knowledge needed to accurately understand, plan and develop the electricity market Comprehensive coverage of all the key topics in the economics of electricity markets Covers the latest research and policy issues as well as description of the fundamental concepts and principles that can be applied across all markets globally Numerous worked examples and end-of-chapter problems Companion website holding solutions to problems set out in the book, also the relevant simulation (GAMS) codes