Аннотация

The second edition of Steven W. Blume’s bestseller provides a comprehensive treatment of power technology for the non-electrical engineer working in the electric power industry This book aims to give non-electrical professionals a fundamental understanding of large interconnected electrical power systems, better known as the “Power Grid”, with regard to terminology, electrical concepts, design considerations, construction practices, industry standards, control room operations for both normal and emergency conditions, maintenance, consumption, telecommunications and safety. The text begins with an overview of the terminology and basic electrical concepts commonly used in the industry then it examines the generation, transmission and distribution of power. Other topics discussed include energy management, conservation of electrical energy, consumption characteristics and regulatory aspects to help readers understand modern electric power systems. This second edition features: New sections on renewable energy, regulatory changes, new measures to improve system reliability, and smart technologies used in the power grid system Updated practical examples, photographs, drawing, and illustrations to help the reader gain a better understanding of the material “Optional supplementary reading” sections within most chapters to elaborate on certain concepts by providing additional detail or background Electric Power System Basics for the Nonelectrical Professional, Second Edition, gives business professionals in the industry and entry-level engineers a strong introduction to power technology in non-technical terms. Steve W. Blume is Founder of Applied Professional Training, Inc., APT Global, LLC, APT College, LLC and APT Corporate Training Services, LLC, USA. Steve is a registered professional engineer and certified NERC Reliability Coordinator with a Master's degree in Electrical Engineering specializing in power and a Bachelor's degree specializing in Telecommunications. He has more than 25 years’ experience teaching electric power system basics to non-electrical professionals. Steve's engineering and operations experience includes generation, transmission, distribution, and electrical safety. He is an active senior member in IEEE and has published two books in power systems through IEEE and Wiley.

Аннотация

Sets forth the steps needed to protect critical telecommunications circuits from power faults and lightning in high voltage environments The need to protect telecommunications circuits from power faults and lightning has never been greater: when power outages or system disturbances occur, reliable telecommunications are essential. With this book as their guide, readers will know what they need to do (and not do) to protect critical telecommunications circuits and equipment located in high voltage environments such as electrical power plants, substations, and power towers. Moreover, the book explains how to get the job done safely, detailing the proper implementation of safety procedures and the use of protective equipment to eliminate or minimize risk. Setting the foundation, the book begins with an overview of the problem, key issues, industry standards, and safety concerns. Next, it covers: Definitions and fundamentals of electric power systems, with regard to HVPT applications Causes, boundary conditions, and calculations of ground potential rise Critical telecommunications circuits that must be protected in high voltage environments Protection schemes and equipment to resolve ground potential rise problems Effective installation and testing of high voltage interface equipment Personal safety for telecommunications personnel working with equipment in high voltage environments Throughout the book, the author refers to accepted industry standards and best practices. Written by one of the most respected professional trainers in the telecommunications industry, High Voltage Protection for Telecommunications can be used for professional training courses or self-study. It will enable readers to protect critical data and voice communications circuits from high voltage events and protect themselves during equipment installation and maintenance.